人教版小学五年级上册数学总复习知识点
一、小数乘法和除法
1、小数乘整数:
意义:求几个相同加数的和的简便运算。
如:1.5义3表达1.5的3倍是多少或3个1.5的和的简便运算。
小数乘整数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;
再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
意义:就是求这个数的几分之几是多少。
如:1.5X0.8就是求1.5的十分之八是多少。
1.5X1.8就是求1.5的1.8倍是多少。
小数乘小数计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再
看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不
够时,要用0占位。
3、规律1:①一个数(0除外)乘大于1的数,积比本来的数大;
②一个数(0除外)乘小于1的数,积比本来的数小:
③一个数(0除外)乘1的数,积等于本来的数。
4、求近似数的方法一般有三种:
(1)四舍五入法(2)进一法(3)去尾法
5、计算钱数时,保存两位小数,表达计算到分;保存一位小数,表达计算到
角。
6、小数四则运算顺序和整数是同样的。
7、运算定律和性质:
加法:加法互换律:a+b=b+a加法结合律:(a+b)+c=a+(b+
c)
减法:减法性质:a-b-c=a—(b+c)a-(b-c)=a-b+c
乘法:①乘法互换律:aXb=bXa
②乘法结合律:(aXb)Xc=aX(bXc)
③乘法分派律:(a+b)Xc=aXc+bXc或(a-b)Xc=aXc—bXc
除法:除法性质:a4-b4-c=a-r(bXc)
例1用简便方法计算下列各题
0.25x104②2.4x2.5x44
③
[email protected]+4.2
例2明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共
付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。每支黑色笔芯多
少钱?
例37.9468保存整数是(),保存一位小数是(),保存两
位小数是()。
一、基础知识填空
1、小数乘法的计算先按整数乘法算出(),在给()点上()o
看因数中一共有几位(),就从积的右边起数出(),点上()。乘
得的积的小数位数不够,要在前面用()补足,再点小数点。
2、积的近似数可以根据需要,按()法保存一定的小数位数。
3、0.367保存两位小数的近似数是(),5.999保存一位小数的近似
数是()。
三、用简便方法计算下面各题。
4.8X0.252.33X0.5X4
1.5X1051.2X2.5+0.8X2.5
五、解决实际问题。
1、鸵鸟的最高速度是非洲野狗的L3倍,鸵鸟的最高速度是56千米/时,
非洲野狗的最高速度是多少千米/时?
2、小明从家到学校的距离是1.8千米,计算天天从家到学校往返要走多少
千米(天天往返两次),一周(按5天计算)要走多少千米?
3、回收1吨废纸,可以保护16棵树,回收54.5吨废纸可以保护多少棵
树?
4、王老师从家骑车到学校要用0.25小时,家离学校有多远?假如他改为
步行,每小时走5千米,用0.8小时能走到学校吗?
二、小数除法
1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一
个因数,求另一个因数的运算。
如:2.4+1.6表达已知两个因数的积是2.4与其中一个因数是1.6,
求另一个因数是多少。
2、小数除以整数计算方法,按整数除法的方法去除,商的小数点要和被除
数的小数点对齐。假如除到末尾仍有余数,要添0再继续除。
3、除数是小数的除法计算方法,先移动除数的小数点,使它变成整数,除
数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0
补足。再按照除数是整数的小数除法进行计算。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保
存一定的小数位数,求出商的近似数。
5、被除数、除数和商的关系。
①被除数比除数大,商大于1。被除数比除数小,商小于1。
②一个数(0除外)除以小于1的数(0除外),商大于被除数;
③一个数(0除外)除以1,商等于被除数;
④一个数(0除外)除以小于1的数(0除外),商大于被除数。
6、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不
变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
注意:A除以B=A+B;A除8=8+人法去除B=B+A;A被B除=人
4-Bo
7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断反
复出现,这样的小数叫做循环小数。
8、小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数
叫做无限小数。循环小数就是无限小数中的一种。
9、一个循环小数的小数部分,依次不断反复出现的数字,叫做这个循环小
数的循环节。
1()、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末
位上面各记一个循环点。循环点最多只点两个。
11、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。在解
决实际问题时,要根据实际情况取商的近似值。
例:0.25X3.94(积保存一位小数)17.6X22.92(得数保存两位小
数)
1.06X2.7(积精确到百分位)0.74X0.21(积精确到十分位)
3、用简便记法表达下列各循环小数。
0.06262•••写作()3.272
7•••()
16.203203・・・写作()
0.33066•••()
4、列竖式计算下面各题,商用循环小数表达。
2.754-62894-90
1564-11
三、整数、小数四则混合运算和应用题
1、四则混合运算顺序
整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数
四则混合运算的运算定律对小数同样合用。
一个算式里,假如只具有同一级运算,要从左往右依次计算;假如具有两级
运算,要先做第二级运算,后做第一级运算;假如有括号,要先算小括号里面
的,再算中括号里面的,最后算括号外面的。
2、解答应用题的环节
(1)弄清题意,并找出已知条件和所求问题;
(2)分析题里数量间的关系,拟定先算什么,再算什么,最后算什么;
(3)拟定每一步该如何算,列出算式,算出得数;
(4)进行检查,写出答案。
例4计算
xO.6+8.93.2x0.7+5.44-1.7
2、把5.8扩大()倍是58,69缩小()倍是0.69。
3、在下面的圆圈里填上“>”、“V”或“二”符号。
4.5X0.6O4.52.76X1.5201.52
1.96X1.801.96X10X0.13.12X003.12
4、脱式计算
213.64-0.84-0.340.5-0.5+10.7518.3054-0.07-8
5.16
5、用简便方法计算
9304-54-0.64.534-0.25+4
6、一只蜜蜂0.5小时飞行9.3千米,是一只蝴蝶飞行速度的2.4倍,这只
蝴蝶每小时飞行多少千米?
7、用一部收割机收大豆,5天可以收割20.8公顷,照这样计算,6天可
以收割多少公顷?104公顷大豆需要多少天才干收割完?
6、中秋节,好利来蛋糕房用一根70米长的红丝带包装月饼盒。每月饼盒
要用1.6米长的丝带。这根红丝带最多可以包装多少盒月饼?
7、有550公斤的苹果要装纸箱运走,每个纸箱最多能装17公斤,至少
需要多少个纸箱才干所有运走?
8、一条高速公路长432千米,一辆客车4.5小时行完全程;一辆货车5.4
小时行完全程。客车的速度比货车快多少?
9、张红买了3支铅笔和5本练习本,共用了8.4元。已知每本练习本要
1.2元,每支铅笔要多少元?
10、机床厂计划全年生产机床480台,实际提前2个月完毕全年任务的
1.5倍,实际平均每月完毕多少台?
11、列式计算
(1)21除214.2的商,乘0.7,积是多少?
(2)18.305除以0.7的商,减去25.46,差是多少?
四、多边形面积的计算
1.长方形:周长=(长+宽)X2C长=2(a+b)
面积=长义宽S长=2b
正方形:周长=边长X4C正=4a
面积=边长X边长S正=2
2、平行四边形有无数条高。三角形有三条高。梯形有无数条高。
3、平行四边形面积公式
平行四边形的面积=底又高S平=211
平行四边形的底=面积+高a¥=S4-h
平行四边形的高=面积♦底h平=S+a
平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;长方形的长相称于平行四边形的底;长方形
的宽相称于平行四边形的高;长方形的面积等于平行四边形的面积。
由于长方形面积=长乂宽,所以平行四边形面积=底又高。
4、三角形面积公式
三角形的面积=底乂高+2SH=ah4-2
三角形的底=面积X2+高aH=SX24-h
三角形的高=面积义2+底hH=SX24-a
三角形面积公式推导:旋转
两个完全同样的三角形可以拼成一个平行四边形,平行四边形的底相称于三角形
的底,平行四边形的高相称于三角形的高;平行四边形的面积等于三角形面积
的2倍,
由于平行四边形面积=底乂高,所以三角形面积=底><高+2
5、梯形面积公式
梯形的面积=(上底+下底)X高+2S梯=(a+b)h-r-2
梯形的高=面积X2+(上底+下底)11梯=$乂2+5+1))
上底+下底=面积X2+高a+b=SX2-i-h
梯形的上底=面积X24■高一下底a梯=SX24-h-b
梯形的下底=面积X2+高一上底1?梯=SX24-h-a
梯形面积公式推导:旋转
两个完全同样的梯形可以拼成一个平行四边形,平行四边形的底相称于梯
形的上下底之和;平行四边形的高相称于梯形的高;平行四边形面积等于梯形面
积的2倍,
由于平行四边形面积=底乂高,所以梯形面积=(上底+下底)X高+2
6、①等底等高的平行四边形面积相等;等底等高的三角形面积相等;
②等底等高的平行四边形面积是三角形面积的2倍。
7、长方形框架拉成平行四边形,周长不变,高和面积变小。
8、求组合图形面积的方法:
(1)分割法(分、拆):将图形进行合理分割,形成基本图形,基本图形面积的
和就是组合图形的面积。(加法)
(2)添补法(挖):将图形所缺部分进行添补,组成几个基本图形,基本图形面积
-添补图形面积=组合图形面积。(减法)
9、不规则图形面积的估算:
(1)数格子的方法;
不规则图形面积=满格数+未满一格的格数(不满一格按半格计算)
(2)把不规则图形当作近似的基本图形,估算出面积。
例5梯形的面积是63平方米,高是7米,已知上底比下底少4米,求下底的长
度。
2、一个平行四边形的面积是12m)假如把他的底和高都扩大到本来的2
倍,得到的平行四边形的面积是()m2
练习题一、填空。
1)()平方米=25平方分米=()平方厘
米
5.34平方米=()平方米()平方分
米
2)长方形的周长=
平行四边形的面积=
梯形的面积=
3)计算三角形面积的字母公式是()o
4)一个平行四边形与一个三角形等底等高,若三角形的面积是256平方分
米,平行四边形的面积是()平方分米。
5)一个直角三角形的两直角边分别是6米和8米,这个直角三角形的面
积是()平方米。
6)一个等边三角形的周长是28.5厘米,高是6.4厘米,面积是()
平方厘米。
7)一堆钢管,每相邻两层都相差1根,最上层2根,最下层8根,这堆钢管
共()根。
8)在一个长方形内画一个最大的三角形,这个三角形面积是
()。
二、判断(对的打“J”,错的打“义”)
1)平行四边形的面积一定比三角形的面积大。()
2)两个等底等高的三角形,面积相等,但形状不一定相同。()
3)平行四边形的底和高各扩大3倍,面积也扩大3倍。()
4)平行四边形的面积或梯形面积的大小分别与它们的底和高有关,与它们
的形状和位置无关。()
5)两个完全同样的锐角三角形可以拼成一个长方形。()
三、选择题(填对的答案的序号)(5分)
1)两个平行四边形的面积相等,它们的底和高()。
①相等②不相等③不一定相等
2)用手拉一个活动的长方形框架,使它成为一个平行四边形,这个平行四
边形的面积()本来长方形面积。
①大于②小于③等于
3)甲、乙两个三角形面积相等,甲的底是乙的2倍,甲的这条底上的高是
乙相应底上高的()。
①2倍②一半③相等
4)平行四边形的底是0.6米,高是0.4米,与它等底等高的三角形的面积是
()o①0.12平方米②0.48平方米③0.24平方米
四、计算。
1)找准所需条件,计算下列图形的面积。(单位:米)
七、应用题
1)一个平行四边形,高7米,底边是9.6米,它的面积是多少?
2)一个三角形的花坛,底边是15米,是高的3倍。这个花坛的占地面积
是多少平方米?
3)一条下水道的横截面是梯形,下水道的宽是2.8米,下水道的底宽是
1.2米,下水道的深是1.6米,它的横截面面积是多少平方米?
4)一块平行四边形的广告牌,每平方米大约要用油漆0.34公斤,油漆工
人带来15公斤油漆,要刷完这块底是4米,高5米的广告牌,这些油漆够吗?
四、简易方程
在具有字母的式子里,字母中间的乘号可以记作“・”,也可以省略不写。
注意:加号、减号除号以及数与数之间的乘号不能省略。
21、aXa可以写作a・a或a2,a2读作a的平方。
2a表达两个a相加,即a+a注意:a=la1a=a
1、方程的意义具有未知数的等式,叫做方程。
2、方程和等式的关系方程一定是等式,等式不一定是方程。
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程的依据是等式的性质
等式性质1等式两边同时加上(或减去)相同的数或式子,等式两边仍然相等
若a=b有a+c=b+c或a-c=b-c
性质2:等式两边同时乘(或除以不为0)相同的数或式子,等式两边仍
然相等A若a=b有ac=bc或
a+c=b+c
5、列方程解应用题的一般环节
(1)弄清题意,找出未知数,并用x表达。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检查,写出答案。
6、数量关系式(也是解方程的依据)
加数=和-另一个加数被减数=差+减数
因数=积+另一个因数被除数=商x除数
如:35+x=2.5就可以根据除数=被除数4-商x=35+2.5
35-x=2.5就可以根据减数=被减数-差x=35-2.5
7、通常用s表达路程,v表达速度,t表达时间
S=vtv=s-?tt=s4-v
相向运动:相遇问题(同时从两地出发,时间相同)
甲行的路程+乙行的路程=总路程
(甲速度+乙速度)X时间=总路程
同向运动:(同时从同地出发,时间相同)
速度快的所行路程一速度慢的所行路程=路程差
(快的速度-慢的速度)X时间=路程差
8、单价X数量=总价总价+数量=单价总价+单价=数量
工作效率义工作时间=工作总量工作问题+工作时间=工作效率
工作总量+工作效率=工作时间
例7用品有字母的式子表达下面的数量关系
(1)x的7倍;(2)x的5倍加上6;(3)5减x的差除以3;
(4)200减5个a;(5)比7个b多2的数。
例9要修一段公路,平均天天修c米,修了6天,还剩下b米。
(1)用品有字母的式子表达这段公路有多少米;
(2)根据这个式子,分别求c等于50,等于20。时,公路长多少米。
例11某个数与9的和的12倍等于156,求这个数是多少。
例12王晰买了2支钢笔和5支圆珠笔,共付17元。一支钢笔的价格是一
支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?
课后练习一、基础知识填空。
1、a读作:(),表达();2a表达()。
2、c=aX4省略称号可写成()。
3、根据运算定律在括号中填上适当的数或字母。
a+(2+c)=()+()+()a・b・c=(),(•)
3x+5x=(+)•()
4、方程100+x=250这样的解是()。
5、省略乘号写出下面各式。aXx=()xXx=()
bX8=(bXl=()
6、、假如用v表达速度,t表达时间,s表达路程,我每分钟骑v
米,5分钟骑()米,a分钟骑()米,假如每分钟行150米,时间是30
分,路程是()米。
7、判断下面的那些式子是方程,是方程的打“。
x+3.5=7()aX2<2.4()3—1.4=2.6()2x+3
y=9()
34-b()8—s=2()6.2-r2>3()4+
2=2()
8、写出每个式子所表达的意义。
每套运动服a元,每双运动鞋b元,买4双运动鞋和3套运动服。
(1)、4b表达();(2)、3a表达();
(3)、a-b表达()(4)、4b+3a表达()0
9、选择对的答案的序号填在()
()叫解方程;()叫方程的解;()叫方程。
①具有未知数的等式。②使方程左右两边相等的未知数的值。③求方程
解的过程。
二、基本练习:
1.方程0.6X=3的解是()
2.a与b的和的一半是()。
3.判断。
(l)aXbX8可以简写成ab8。()
⑵x+5=4X5是方程。()
(3)方程一定是等式。()
(4)a的立方等于3个a相加。()
(5)a4-b中,a、b可以是任何数。()
二、解下列方程,最后两题要写出检查过程。
3.4x—48=26.82x—97=34.2
42x+25x=13413(x+5)=169
三、列方程解文字式题。
1、一个数的4倍加上这个数的1.5倍等于40.7,
2、比一个数的1.2倍少0.5的数是9.1,求这个数。
四、列方程解应用题
1、每盏路灯要装5个灯泡,这条街一共需要140个灯泡,这条街一共有
多少灯?
2、一幅画的长是宽的2倍。做画框用了2.4米木条,这幅画的长、宽分别
是多少?
3、我买了两套丛书,科学家丛书每本2.5元,发明家丛书每本3元,
两套丛书的本数相同,共花了27.5元,每套丛书各有多少本?
4、果园里共有桃树和李树360棵,桃树的棵数是李树的3倍,桃树和李树
各有多少棵?
4、某工厂去年创产值1500万元,比前年的2倍还多10万元,前年创
产值多少万元?
五、记录与也许性
1、在我们生活中有很多事件是不拟定的,如何求事件发生也许性的大小
是本节知识的重点。
2、感受等也许事件发生的也许性,会用分数进行表达;会用数学语言描述
获胜的也许性。
3、投掷硬币,每次正面、反面朝上的也许性
说出下列事件发生的也许性是多少?
1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出红色球的也许性
是多少?白色呢?黄色?
2、商场促销,将奖品放置于1到9号的箱子中,幸运顾客有一次猜机会,一位顾
客猜中得奖的也许性是多少?
3、盒子中有红色球5个,蓝色球12个,黄色球8个,只取一次,取
出红色球的也许性大还是黄色球?
例14、1.抽奖箱中有5个白球、2个红球和3个黄球,抽到白球的也许
性是()。抽到红球的也许性是()。
抽到黄球的也许性是()。抽到()球的也许性最
大。
2.小正方体各面分别写着1、2、3、4、5、6,掷出每个数的也许性是
(),单数朝上的也许性是(),
双数朝上的也许性是(),假如掷30次,“3”朝上的次数大约()。
3.信封里有6张卡片,分别写着1、2、2、3、3、3,从中任意抽取一张,
抽到数字()的也许性是最大的。
六、位置
1、拟定物体的位置,要用到数对(先列后行,即先竖后横)。
2、用数对要能解决两个问题:
1)给出一对数对,要能在坐标图中标出物体所在位置的点。
2)给出坐标图中的一个点,要能用数对表达该点位置。
七、植树问题
1、不封闭栽树问题:
(1)两端都栽树:①一边:棵数=间隔数+1全长=间隔数义间距
间距=全长小间隔数间隔数=全长+间距
②两边:棵数=(间隔数+1)X2
(3)两端不栽树:①一边:棵数=间隔数T②两边:棵数=(间隔数T)
X2
(4)一端栽一端不栽:①一边:棵数=间隔数②两边:棵数=间隔数X2
(5)锯木头时间问题:锯一段木头时间=总时间+(段数-1)
2、封闭图形四周栽树问题:棵树=间隔数,即棵数=周长+间距
五年级上册第一单元测试题(小数乘法)
一、计算。A2.5x4=2.4x0.01=8x0.24=
3.9x1.3=
3.2x0.16=8x0.125=4.2x3.5=0.27x3=
0.85x72=1.6x4.6=8.9x4=
2.98x3.20二、填空。
1、3.5x9表达()
2、根据46x15=690,直接写出下面各题的结果。1x4.645=
0.46x0.15=4.6x1.5=
3、0.8+0.8+0.8+0.8用乘法算式表达是()
4、一个三位小数,保存两位小数是1.50,这个三位小数最大(),最小
()。
5,13.65扩大()倍是1365;6.6缩小()倍是0.066。
6、把7..........用简便方法写出来是(),保存两位小数是()。劣7、
把7.1687保存整数约是(),精确到千分位约是()。
8、4.09x0.05的积有()小数,5.2x4.76的积有()位小数。
三、在O里填上或“=”。
0.3x1.200.30.5x1.801.80.3x0.200.3
1.5x1.801.80.3x100.31x1.201.2
42.85x1.15042.8569.4x0.9898069.48.9
5x1.000108.95148.8x0.910148.8
四、脱式计算(能简算的要用简算)12^5x0.4x2.5x8
9.5x101
4.2X7.8+2.2x4,20.87x3.16+4.64
A五、列式计算A1、1.25乘4.2减5,差是多少?A
2、比4.7的1.5倍多3.05的数是多少?
3、商店运进14筐苹果,每筐35.8公斤,卖掉了400公斤,还剩下多少公斤?
4、甲车和乙车同时从两地相对开出,8小时后相遇,甲车每小时行80千米,乙
车的速度是甲车的1.02倍,两地相距多少千米?
五年级上册第三单元检测题(小数除法)
一、填空题。(每空1分,共23分)
1.两个因数的积是6.4,其中的一个因数是1.6,另一个因数是()□
2.两个数相除的商是0.85,假如被除数和除数的小数点同时向右移动两位,这时
商是()。
3.1.324-0.4=()4-4124-0.06=()4-6
4.3^1.1的商用循环小数表达是(),保存一位小数是()o
5.小明在做一道除法算式时,把除数6看作了9,算出的商是0.4,对的的商应是
()O
6.8.5的1.3倍是();91.2是3.8的()倍。
7.在下面的里填上“>”“<”或。
1.49-?0.9O1,493.87x1.2O3.87
6.52+0.7O652+707.02x0.107.02+10
8.在1.2323,1.5050...0.568412,1.205205...,3.1415926…中,
有限小数有()个;无限小数有()个;循环小数有()个。
9.把1.14,1.4,L15,Li4这四个数按照从小到大的顺序排列是
()。
10.一辆自行车4小时行驶16千米,这辆自行车每小时行驶()千米,每行驶1千
米需要()小时。
11.一个两位小数,保存一位小数后是6.5,这个两位小数最大是(),最小
是()。
12.找规律:6X0.7=4.26.6X6.7=44.22,
()X66.7=444.2226.666X666.7=()
二、“对号入座”选一选。(每题1分,共5分)
1.5.9948保存两位小数约是()。
A.6.00B.5.99C.6.0
2.下面算式中,商是无限小数的是()。
A.36+6B.6.257.25C.4.8+7
3.下面算式的商最大的是()。
A.8.5+0.125B.8.572.5C.8.5+1.25
4.每一个油桶最多装4.5公斤油,购买62公斤,至少要准备()只这样的油
桶?
A.13B.14C.15
5.一个停车场收费标准为:停车2小时以内收费5元,超过2小时按每小时4元
收费(局限性1小时按1小时计算)。王叔叔交了21元停车费,他最多在这个停车
场停车()小时。
A.6B.5C.4
三、小法官判对错,对的打“J”,错的打“X”。(每题1分,共5分)
1.无限小数都比有限小数大。()
2.2.3X1.24-2.3X1.2=!()
3.大于0.5且小于0.6的两位小数有9个。()
4.被除数和除数都是小数,商不一定是小数。()
5、循环小数7.诂[的小数部分的第50位上的数字是5=()
四、计算。(共37分)1.直接写出得数。(10分)
324-0.8=0.274-0.03=0.36+1.2=
1.64-0.8=804-0.4=0.65X0.4=
0.7X1.3=1.244-0.4=3.52+0.48=7-
2.45=
2.列竖式计算。(15分)
18・2425.3+0.881.687+0.28
2.54-0.7(得数保存两位小数)2・1.1(用循环小数表商)
3.下面各题如何简便如何算。(12分)
2.8+1.2x0.71.25x9.5x0.8
3.64-(2.58+4.62)0.84-2.54-4
五、解决问题。(每小题5分,共30分)
1.小云家有一块长方形的菜地,面积是33.58平方米,它的宽是7.3米,长是多少
米?
2.一条高速路长336km,一辆客车3.2小时行完全程,一辆货车4小时行完全
程,客车的速度比货车的速度快多少?
3.小芳买了一支净含量140g的儿童牙膏,她早晚各刷一次牙,刷一次平均用
牙膏1.25g。这支牙膏小芳可以用多少天?
4.一辆汽车2.5小时行驶200千米,照此速度,行驶500千米需要多少小
时?
5.张老师准备用100元钱买一些文具作为运动会奖品,他先花45.6元钱买了12
套七巧板,剩下的钱准备买单价2.4元的钢笔,最多可以买几支钢笔?
6.假日里,李老师带了部分同学去森林公园玩,门票每人6.5元,他们买门票共花
了175.5元,还必须准备94.5元买回去的车票。
(1)李老师一共带了多少同学去森林公园玩?
(2)你还能提出其他数学问题并解答吗?
五年级上册第五单元检测题(简易方程)
一、填空(25分)
1、小明身高138厘米,比哥哥矮a厘米,哥哥身高()厘米。
2、一个正方形的边长是a米,它的周长是()米,面积是()米2。
3、一堆煤有a吨,每车运b吨,运了5车后,还剩()吨。
4、在自然数中,与数a相邻的两个数是()和()它们三个数的和是
()o
5、当5x=11时,x=(),4x=()o
6、2.8比()的5倍少1.2。
7、已知x=4是方程ax—18=6的解,a的值是(),6a=()。
8、小丽买了5个笔记本,每个x元,付出了20元,应找回()元。
9、某班有学生40名。女生有40-b名,这里的b表达()。
8、当a=10时,b=15时,3a=(),b+a=()。
9、解1.7x=8.5时,需要在方程的两边同时除以(),x=()o
1()、四年级有X人,三年级比四年级少15人,三年级有()人。
11、三个连续的自然数,最大的数是A,最小的数是(),中间的数是
()o
12、学校有a个足球,篮球的个数是足球的2.5倍。学校有足球和篮球共()
个,篮球比足球多()个。
13、一枝圆珠笔a元,比一枝钢笔便宜6.9元,买一枝钢笔和一枝圆珠笔共用
()元。
14、一辆汽车t小时行了s千米,每小时行()千米
二、选择(10分)
1、下面()说法是对的的。
A、具有未知数的式子叫做方程。B、2a一定大于a。
C、x=20是方程4+x=0.2的解。
2、爸爸今年a岁,比妈妈大3岁,表达妈妈岁数的式子是()。
A、a+3B、a-3C、a-3+1
3、长方形的周长是c米,宽是b米,长是()米。
A、c-bB、c—2bC、c4-2-b
4、下面各式不属于方程的是()。
A、7+5xB、7.2+8.3=15.5C、X+2=7
5、已知△+△+0=19△+0=12,那么:△和O分别是()。
A9>8B、7、6C7,5
三、判断(5分)
1、y=6是方程。()
2、等式不一定是方程,方程一定是等式。()
3、x?与2x表达的意义相同。)
4、甲数减去乙数,差是b,甲数是x,乙数就是x-b。)
5、X=3是方程8+2X=30的解。()
四、计算(29分)
1、省略乘号写出下面各式:(5分)
3Xx7Xb+8=aX1.2Xa=5d-2d=x•x=
2、解方程:(24分)
12-j-x=0.3(检查)6.75—x=1.68(检查)0.7x=4.2
0.7x+6X5=37(10x-25)-?5=152X-
7.5=8.5
7.9X-X=8.9713(X+5)=91
五、解决问题:(共31分)
1、李明到书店买了4本连环画和3本故事书,一共付了29.7元,连环画每本
4.8元,故事书每本多少元?(本题6分)(用两种方法解)
2、根据记录,2023年亚洲人口约有39亿,比欧洲人口的5倍还多4亿,2023
年欧洲人口有多少亿?(用方程解)(本题5分)
3、图书室科技书的本数比文艺书的3倍少75本,科技书有495本。文艺书有多
少本?(用方程解)(本题5分)
4、小红和小明共有126张邮票,小红的邮票是小明的2倍,小明和小红各有多
少邮票?(用方程解)(本题5分)
5、爸爸比儿子大36岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各
是多少岁?(用方程解)(本题5分)
五年级上册第六单元检测题(多边形的面积)
一、“认真细致”填一填:(17分)
1、篮球场占地约420(),2.65平方米=()平方分米
3600平方米=()公顷286厘米=()米
2、一个三角形底5dm,高6dm,面积是()dm2,与它等底等高的平行四边
形面积是()o
4、右图平行四边形的面积是15cm2,阴影部分的面积是()0
5、一个梯形的上底是24cm,下底16cm,高1dm,面积是()。
6、一个平行四边形的面积是60cm2,假如它的高缩小3倍,底不变,面积是
()。
有话要说...